K8S1.14高可用生产集群部署方案

云计算

系统说明
系统组件版本

操作系统: CentOS 7.6
Kernel: 4.4
Kubernetes: v1.14.1
docker: 18.09 (支持 1.13.1, 17.03, 17.06, 17.09, 18.06, 18.09 )
Etcd: v3.3.12
Flannel: v0.11
cni-plugins: v0.7.5
Coredns: 1.4.0

架构示意图

架构说明:

使用六台主机,三台Master节点, 三台node节点
Master节点上部署的Kubernetes组件有kube-apiserver, kube-scheduler, kube-controller-manager,kube-proxy。部署网络组件flannel,数据存储集群Etcd.
Master的两个高可用节点部署Haproxy和keepalived
Node 节点部署的Kubernetes组件有Kubelet,kube-proxy。 容器组件Docker,网络组件Flannel
集群IP和主机名信息:

集群角色 主机名 IP

Master
master-1
192.168.20.44

Master
master-2
192.168.20.45

Master
master-3
192.168.20.46

Node
k8s-node-1
192.168.20.47

Node
k8s-node-2
192.168.20.48

Node
k8s-node-3
192.168.20.49

Ceph 需要一个可用的Ceph集群

系统初始化
1. 主机初始化

安装好CentOS7的系统,做以下操作:

关闭firewalld,Selinux。
更新系统软件包,执行yum update
安装elrepo的源,更新内核为4.4或以上版本,并重启生效
分别设置主机名为,并在本地hosts文件中解析。
安装NTP服务
设置内核参数

设置内核参数的部分,要确认执行如下操作:


# 高可用Master节点设置内核参数
cat <<EOF >  /etc/sysctl.d/k8s.conf
net.ipv4.ip_nonlocal_bind = 1    
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_local_port_range = 10000 65000
fs.file-max = 2000000
net.ipv4.ip_forward = 1
vm.swappiness = 0
EOF

# 其他Master节点和计算节点设置内核参数
cat <<EOF >  /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_local_port_range = 10000 65000
fs.file-max = 2000000
net.ipv4.ip_forward = 1
vm.swappiness = 0
EOF

2. 安装Docker

由于在Kubernetes1.14的版本中,支持的版本有 1.13.1, 17.03, 17.06, 17.09, 18.06, 18.09,所以这里统一使用Docker 18.09。

下载docker-ce-18.09的rpm包和阿里云上对应的docker-ce.repo的源,在所有node节点上直接安装:

mv docker-ce.repo /etc/yum.repos.d/
yum install docker-ce-18.09.5-3.el7.x86_64.rpm -y

在所有node节点启动docker,并配置自启动:

systemctl start docker
systemctl enable docker

3. 创建目录

在所有主机上执行如下命令,创建所需目录:

mkdir -p /opt/kubernetes/{cfg,bin,ssl,log}

4. 准备Kubernetes软件包

从github下载kubernetes 1.14版本的二进制软件包,下载地址: https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG-1.14.md#server-binaries

下载如下软件包:

[root@master-1 tmp]# ll
total 537520
-rw-r--r-- 1 root root 113938518 Jul 24 19:15 kubernetes-node-linux-amd64.tar.gz
-rw-r--r-- 1 root root 433740362 Jul 24 19:09 kubernetes-server-linux-amd64.tar.gz

解压:

tar xf kubernetes-server-linux-amd64.tar.gz

5.准备etcd和flannel组件

从github下载etcd v3.3.12和flannel v0.11.0 :

wget https://github.com/etcd-io/etcd/releases/download/v3.3.12/etcd-v3.3.12-linux-amd64.tar.gz
wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz

制作CA证书

Kubernetes支持使用多种方式生成证书,可以使用easyrsa, openssl 或 cfssl任一一种生成。
参考链接

这里使用cfssl创建CA证书。

1.安装CFSSL

使用cfssl生成CA证书需要单独安装cfssl。

[root@master-1 ~]# cd /usr/local/src/

curl -L https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -o /opt/kubernetes/bin/cfssl
curl -L https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -o /opt/kubernetes/bin/cfssljson
curl -L https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -o /opt/kubernetes/bin/cfssl-certinfo
chmod  x /opt/kubernetes/bin/*

所有节点添加Kubernetes的bin目录到系统环境变量:

echo \\\'PATH=$PATH:/opt/kubernetes/bin\\\' >>/etc/profile
source /etc/profile

2.生成证书

创建需要的配置文件:

[root@master-1 ~]# cd /opt/kubernetes/ssl/
[root@master-1 ssl]# cfssl  print-defaults config > config.json
[root@master-1 ssl]# cfssl print-defaults csr > csr.json
[root@master-1 ssl]# ll
total 8
-rw-r--r-- 1 root root 567 Jul 26 00:05 config.json
-rw-r--r-- 1 root root 287 Jul 26 00:05 csr.json
[root@master-1 ssl]# mv config.json ca-config.json
[root@master-1 ssl]# mv csr.json  ca-csr.json

修改生成的文件为如下内容:
ca-config.json文件:

[root@master-1 ssl]# vim ca-config.json
{
  signing: {
    default: {
      expiry: 87600h
    },
    profiles: {
      kubernetes: {
        usages: [
            signing,
            key encipherment,
            server auth,
            client auth
        ],
        expiry: 87600h
      }
    }
  }
}

ca-csr.json文件:

[root@master-1 ssl]# vim ca-csr.json 
{
    CN: kubernetes,
    key: {
        algo: rsa,
        size: 2048
    },
    names: [
        {
          C: CN,
          ST: BeiJing,
          L: BeiJing,
          O: k8s,
          OU: System
        }
    ]
}

生成证书(ca-key.pem)和秘钥(ca.pem):

[root@master-1 ssl]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca
2018/07/26 00:27:00 [INFO] generating a new CA key and certificate from CSR
2018/07/26 00:27:00 [INFO] generate received request
2018/07/26 00:27:00 [INFO] received CSR
2018/07/26 00:27:00 [INFO] generating key: rsa-2048
2018/07/26 00:27:01 [INFO] encoded CSR
2018/07/26 00:27:01 [INFO] signed certificate with serial number 479065525331838190845576195908271097044538206777
[root@master-1 ssl]# ll
total 20
-rw-r--r-- 1 root root  386 Jul 26 00:16 ca-config.json
-rw-r--r-- 1 root root 1001 Jul 26 00:27 ca.csr
-rw-r--r-- 1 root root  255 Jul 26 00:20 ca-csr.json
-rw------- 1 root root 1679 Jul 26 00:27 ca-key.pem
-rw-r--r-- 1 root root 1359 Jul 26 00:27 ca.pem

分发证书到各个节点:

[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.45:/opt/kubernetes/ssl
[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.46:/opt/kubernetes/ssl
[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.47:/opt/kubernetes/ssl
[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.48:/opt/kubernetes/ssl
[root@master-1 ssl]# scp ca.csr ca.pem ca-key.pem ca-config.json 192.168.20.49:/opt/kubernetes/ssl

HA 节点部署

这里选择两个Master节点部署Haproxy 和 keepalived, keepalived上需要添加监控haproxy应用的脚本。

keepalived 配置

HA节点下载安装keepalive:

yum install keepalived -y

配置两个虚拟IP,一个用于k8s集群的apiserver代理,另一个用于nginx ingress入口(也可以单独配置),同时要设置对haproxy的状态判断,如果节点上的haproxy进程结束需要自动切换VIP到另一节点上, 主HA配置如下:

# cat /etc/keepalived/keepalived.conf 
! Configuration File for keepalived

vrrp_script check_haproxy {
        script /etc/keepalived/check_haproxy.sh
        interval 3
        weight -20
}

vrrp_instance K8S {
    state backup 
    interface eth0
    virtual_router_id 44
    priority 200
    advert_int 5
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.20.50
        192.168.20.60

    }
    track_script {
        check_haproxy
   }

}

从HA配置如下:

! Configuration File for keepalived

vrrp_script check_haproxy {
        script /etc/keepalived/check_haproxy.sh
        interval 3
        weight -20
}

vrrp_instance K8S {
    state backup
    interface eth0
    virtual_router_id 44
    priority 190
    advert_int 5
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.20.50
        192.168.20.60

    }
    track_script {
        check_haproxy
   }
}

在这两个节点上配置对应的监测脚本:

vim /etc/keepalived/check_haproxy.sh

#!/bin/bash
active_status=`netstat -lntp|grep haproxy|wc -l`
if [ $active_status -gt 0 ]; then
    exit 0
else
    exit 1
fi

需要添加权限

chmod  x /etc/keepalived/check_haproxy.sh

部署Haproxy

官方配置手册

需要先确认已经配置了内核参数:

echo \\\'net.ipv4.ip_nonlocal_bind = 1\\\'>>/etc/sysctl.conf
echo \\\'net.ipv4.ip_forward = 1\\\'>>/etc/sysctl.conf

sysctl -p

安装haproxy

yum install haproxy -y

配置haproxy, 我们为k8s集群设计的VIP为 192.168.20.50,使用4层代理的方式, 配置文件如下:

# cat /etc/haproxy/haproxy.cfg |egrep -v ^#

global

    log         127.0.0.1 local2

    chroot      /var/lib/haproxy
    pidfile     /var/run/haproxy.pid
    maxconn     4000
    user        haproxy
    group       haproxy
    daemon

    # turn on stats unix socket
    stats socket /var/lib/haproxy/stats

defaults
    mode                    tcp           # 修改默认为四层代理
    log                     global
    option                  httplog
    option                  dontlognull
    option http-server-close
    option forwardfor       except 127.0.0.0/8
    option                  Redispatch
    retries                 3
    timeout http-request    10s
    timeout queue           1m
    timeout connect         10s
    timeout client          1m
    timeout server          1m
    timeout http-keep-alive 10s
    timeout check           10s
    maxconn                 3000

frontend  main 192.168.20.50:6443
    acl url_static       path_beg       -i /static /images /javascript /stylesheets
    acl url_static       path_end       -i .jpg .gif .png .css .js

    default_backend             k8s-node

backend k8s-node
    mode        tcp             # 修改为tcp
    balance     roundrobin
    server  k8s-node-1  192.168.20.44:6443 check     # 三个master主机
    server  k8s-node-2  192.168.20.45:6443 check
    server  k8s-node-3  192.168.20.46:6443 check

配置完成之后检查IP是否可以自动切换。

部署ETCD集群
1.安装etcd

执行如下命令,完成etcd的安装:

[root@master-1 ~]# cd /tmp/
[root@master-1 tmp]# tar xf etcd-v3.3.12-linux-amd64.tar.gz 
[root@master-1 tmp]# cd etcd-v3.3.12-linux-amd64
[root@master-1 tmp]# cp etcd* /opt/kubernetes/bin/
[root@master-1 tmp]# scp etcd* 192.168.20.45:/opt/kubernetes/bin/
[root@master-1 tmp]# scp etcd* 192.168.20.46:/opt/kubernetes/bin/

2.生成etcd的专属证书

1.创建etcd证书签名请求

[root@master-1 ~]# vim etcd-csr.json
{
  CN: etcd,
  hosts: [
    127.0.0.1,
192.168.20.44,
192.168.20.45,
192.168.20.46
  ],
  key: {
    algo: rsa,
    size: 2048
  },
  names: [
    {
      C: CN,
      ST: BeiJing,
      L: BeiJing,
      O: k8s,
      OU: System
    }
  ]
}

2.生成etcd证书

[root@master-1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem  \\\\
-ca-key=/opt/kubernetes/ssl/ca-key.pem  \\\\
-config=/opt/kubernetes/ssl/ca-config.json  \\\\
-profile=kubernetes etcd-csr.json | cfssljson -bare etcd

会生成如下文件:

[root@master-1 ~]# ll
total 16
-rw-r--r-- 1 root root 1062 Jul 26 01:18 etcd.csr
-rw-r--r-- 1 root root  287 Jul 26 00:50 etcd-csr.json
-rw------- 1 root root 1679 Jul 26 01:18 etcd-key.pem
-rw-r--r-- 1 root root 1436 Jul 26 01:18 etcd.pem

移动证书到ssl目录:

[root@master-1 ~]#  cp etcd*.pem /opt/kubernetes/ssl
[root@master-1 ~]# scp etcd*.pem 192.168.20.45:/opt/kubernetes/ssl
[root@master-1 ~]# scp etcd*.pem 192.168.20.46:/opt/kubernetes/ssl

3.配置etcd

配置ETCD配置文件

master-1上的配置为:

[root@master-1 ~]# vim /opt/kubernetes/cfg/etcd.conf
#[member]
ETCD_NAME=etcd-node-1
ETCD_DATA_DIR=/var/lib/etcd/default.etcd
#ETCD_SNAPSHOT_COUNTER=10000
#ETCD_HEARTBEAT_INTERVAL=100
#ETCD_ELECTION_TIMEOUT=1000
ETCD_LISTEN_PEER_URLS=https://192.168.20.44:2380
ETCD_LISTEN_CLIENT_URLS=https://192.168.20.44:2379,https://127.0.0.1:2379
#ETCD_MAX_SNAPSHOTS=5
#ETCD_MAX_WALS=5
#ETCD_CORS=
#[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS=https://192.168.20.44:2380
# if you use different ETCD_NAME (e.g. test),
# set ETCD_INITIAL_CLUSTER value for this name, i.e. test=http://...
ETCD_INITIAL_CLUSTER=etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_INITIAL_CLUSTER_TOKEN=k8s-etcd-cluster
ETCD_ADVERTISE_CLIENT_URLS=https://192.168.20.44:2379
#[security]
CLIENT_CERT_AUTH=true
ETCD_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem
PEER_CLIENT_CERT_AUTH=true
ETCD_PEER_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_PEER_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_PEER_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem

master-2上的配置为:

[root@master-2 tmp]# vim /opt/kubernetes/cfg/etcd.conf
#[member]
ETCD_NAME=etcd-node-2
ETCD_DATA_DIR=/var/lib/etcd/default.etcd
#ETCD_SNAPSHOT_COUNTER=10000
#ETCD_HEARTBEAT_INTERVAL=100
#ETCD_ELECTION_TIMEOUT=1000
ETCD_LISTEN_PEER_URLS=https://192.168.20.45:2380
ETCD_LISTEN_CLIENT_URLS=https://192.168.20.45:2379,https://127.0.0.1:2379
#ETCD_MAX_SNAPSHOTS=5
#ETCD_MAX_WALS=5
#ETCD_CORS=
#[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS=https://192.168.20.45:2380
# if you use different ETCD_NAME (e.g. test),
# set ETCD_INITIAL_CLUSTER value for this name, i.e. test=http://...
ETCD_INITIAL_CLUSTER=etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_INITIAL_CLUSTER_TOKEN=k8s-etcd-cluster
ETCD_ADVERTISE_CLIENT_URLS=https://192.168.20.45:2379
#[security]
CLIENT_CERT_AUTH=true
ETCD_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem
PEER_CLIENT_CERT_AUTH=true
ETCD_PEER_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_PEER_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_PEER_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem

master-3上的配置为:

[root@master-3 ~]# vim /opt/kubernetes/cfg/etcd.conf
#[member]
ETCD_NAME=etcd-node-3
ETCD_DATA_DIR=/var/lib/etcd/default.etcd
#ETCD_SNAPSHOT_COUNTER=10000
#ETCD_HEARTBEAT_INTERVAL=100
#ETCD_ELECTION_TIMEOUT=1000
ETCD_LISTEN_PEER_URLS=https://192.168.20.46:2380
ETCD_LISTEN_CLIENT_URLS=https://192.168.20.46:2379,https://127.0.0.1:2379
#ETCD_MAX_SNAPSHOTS=5
#ETCD_MAX_WALS=5
#ETCD_CORS=
#[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS=https://192.168.20.46:2380
# if you use different ETCD_NAME (e.g. test),
# set ETCD_INITIAL_CLUSTER value for this name, i.e. test=http://...
ETCD_INITIAL_CLUSTER=etcd-node-1=https://192.168.20.44:2380,etcd-node-2=https://192.168.20.45:2380,etcd-node-3=https://192.168.20.46:2380
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_INITIAL_CLUSTER_TOKEN=k8s-etcd-cluster
ETCD_ADVERTISE_CLIENT_URLS=https://192.168.20.46:2379
#[security]
CLIENT_CERT_AUTH=true
ETCD_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem
PEER_CLIENT_CERT_AUTH=true
ETCD_PEER_CA_FILE=/opt/kubernetes/ssl/ca.pem
ETCD_PEER_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
ETCD_PEER_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem

在三个节点上创建etcd的systemd文件:

[root@master-1 ~]# vim /usr/lib/systemd/system/etcd.service
[Unit]
Description=etcd
Documentation=https://github.com/coreos/etcd
Conflicts=etcd.service
Conflicts=etcd2.service

[Service]
Type=notify
Restart=always
RestartSec=5s
LimitNOFILE=40000
TimeoutStartSec=0
WorkingDirectory=/var/lib/etcd
EnvironmentFile=-/opt/kubernetes/cfg/etcd.conf
# set GOMAXPROCS to number of processors
ExecStart=/bin/bash -c GOMAXPROCS=$(nproc) /opt/kubernetes/bin/etcd

[Install]
WantedBy=multi-user.target

启动ETCD服务,在三个节点执行如下命令:

mkdir /var/lib/etcd
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd

确认所以节点的etcd服务启动。

4.验证集群

[root@master-1 ~]# etcdctl --endpoints=https://192.168.20.44:2379 \\\\
 --ca-file=/opt/kubernetes/ssl/ca.pem \\\\
 --cert-file=/opt/kubernetes/ssl/etcd.pem \\\\
 --key-file=/opt/kubernetes/ssl/etcd-key.pem cluster-health
member 32922a109cfe00b2 is healthy: got healthy result from https://192.168.20.46:2379
member 4fa519fdd3e64a84 is healthy: got healthy result from https://192.168.20.45:2379
member cab6e832332e8b2a is healthy: got healthy result from https://192.168.20.44:2379
cluster is healthy

Master节点部署
1.部署Kubernetes软件包

[root@master-1 ~]# cd /tmp/kubernetes/server/bin/
[root@master-1 bin]# cp kube-apiserver /opt/kubernetes/bin/
[root@master-1 bin]# cp kube-controller-manager /opt/kubernetes/bin/
[root@master-1 bin]# cp kube-scheduler /opt/kubernetes/bin/

2.生成API Server的认证文件

参考链接

1.创建用于生成CSR的JSON文件,这里需要指定HA代理的IP,和集群的ClusterIP:

[root@master-1 ~]# cd /opt/kubernetes/ssl
[root@master-1 ssl]# vim kubernetes-csr.json
{
  CN: kubernetes,
  hosts: [
    127.0.0.1,
    192.168.20.50,
    10.1.0.1,
    kubernetes,
    kubernetes.default,
    kubernetes.default.svc,
    kubernetes.default.svc.cluster,
    kubernetes.default.svc.cluster.local
  ],
  key: {
    algo: rsa,
    size: 2048
  },
  names: [
    {
      C: CN,
      ST: BeiJing,
      L: BeiJing,
      O: k8s,
      OU: System
    }
  ]
}

2.生成Kubernetes的证书和私钥

[root@master-1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \\\\
   -ca-key=/opt/kubernetes/ssl/ca-key.pem \\\\
   -config=/opt/kubernetes/ssl/ca-config.json \\\\
   -profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes

将私钥分发到其它所有的node节点中:

[root@master-1 ssl]# scp kubernetes*.pem 192.168.20.46:/opt/kubernetes/ssl/
...

创建 API Server使用的token文件

[root@master-1 ~]# head -c 16 /dev/urandom | od -An -t x | tr -d \\\' \\\'
197f33fcbbfab2d15603dcc4408358f5
[root@master-1 ~]# vim /opt/kubernetes/ssl/bootstrap-token.csv
197f33fcbbfab2d15603dcc4408358f5,kubelet-bootstrap,10001,system:kubelet-bootstrap

创建基础用户名,密码认证配置

[root@k8s-node-1 ~]#  vim /opt/kubernetes/ssl/basic-auth.csv
admin,admin,1
readonly,readonly,2

将ssl目录的文件拷贝到其它的master节点上

scp -r -p /opt/kubernetes/ssl/*  k8s-node-1:/opt/kubernetes/ssl/
scp -r -p /opt/kubernetes/ssl/*  k8s-node-2:/opt/kubernetes/ssl/
scp -r -p /opt/kubernetes/ssl/*  k8s-node-3:/opt/kubernetes/ssl/

3.部署kube-apiserver

创建kube-apiserver的systemd文件

[root@k8s-node-1 ~]#  vim /usr/lib/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target

[Service]
ExecStart=/opt/kubernetes/bin/kube-apiserver \\\\
  --enable-admission-plugins=MutatingAdmissionWebhook,ValidatingAdmissionWebhook,NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,NodeRestriction \\\\
  --bind-address=192.168.20.44 \\\\
  --insecure-bind-address=127.0.0.1 \\\\
  --authorization-mode=Node,RBAC \\\\
  --runtime-config=rbac.authorization.k8s.io/v1 \\\\
  --kubelet-https=true \\\\
  --anonymous-auth=false \\\\
  --basic-auth-file=/opt/kubernetes/ssl/basic-auth.csv \\\\
  --enable-bootstrap-token-auth \\\\
  --token-auth-file=/opt/kubernetes/ssl/bootstrap-token.csv \\\\
  --service-cluster-ip-range=10.1.0.0/16 \\\\
  --service-node-port-range=20000-40000 \\\\
  --tls-cert-file=/opt/kubernetes/ssl/kubernetes.pem \\\\
  --tls-private-key-file=/opt/kubernetes/ssl/kubernetes-key.pem \\\\
  --client-ca-file=/opt/kubernetes/ssl/ca.pem \\\\
  --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\\\
  --etcd-cafile=/opt/kubernetes/ssl/ca.pem \\\\
  --etcd-certfile=/opt/kubernetes/ssl/kubernetes.pem \\\\
  --etcd-keyfile=/opt/kubernetes/ssl/kubernetes-key.pem \\\\
  --etcd-servers=https://192.168.20.44:2379,https://192.168.20.45:2379,https://192.168.20.46:2379 \\\\
  --enable-swagger-ui=true \\\\
  --allow-privileged=true \\\\
  --audit-log-maxage=30 \\\\
  --audit-log-maxbackup=3 \\\\
  --audit-log-maxsize=100 \\\\
  --audit-log-path=/opt/kubernetes/log/api-audit.log \\\\
  --event-ttl=1h \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

启动kube-apiserver服务

[root@k8s-node-1 ~]# systemctl daemon-reload
[root@k8s-node-1 ~]# systemctl start kube-apiserver
[root@k8s-node-1 ~]# systemctl enable kube-apiserver

查看服务状态是否正常

[root@master-1 ~]# systemctl status kube-apiserver
[root@master-1 ~]# netstat -lntp|grep kube-apiserver
tcp        0      0 192.168.20.44:6443      0.0.0.0:*               LISTEN      4289/kube-apiserver 
tcp        0      0 127.0.0.1:8080          0.0.0.0:*               LISTEN      4289/kube-apiserver 

4.部署controller-manager

生成controller-manager的systemd文件

[root@master-1 ~]# vim /usr/lib/systemd/system/kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]
ExecStart=/opt/kubernetes/bin/kube-controller-manager \\\\
  --bind-address=127.0.0.1 \\\\
  --master=http://127.0.0.1:8080 \\\\
  --allocate-node-cidrs=true \\\\
  --service-cluster-ip-range=10.1.0.0/16 \\\\
  --cluster-cidr=10.2.0.0/16 \\\\
  --cluster-name=kubernetes \\\\
  --cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \\\\
  --cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \\\\
  --service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem \\\\
  --root-ca-file=/opt/kubernetes/ssl/ca.pem \\\\
  --leader-elect=true \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

启动kube-controller-manager

[root@master-1 ~]# systemctl daemon-reload
[root@master-1 ~]# systemctl start kube-controller-manager
[root@master-1 ~]# systemctl enable kube-controller-manager

查看服务状态

[root@master-1 ~]# systemctl status kube-controller-manager
[root@master-1 ~]# netstat -lntp|grep kube-con
tcp        0      0 127.0.0.1:10252         0.0.0.0:*               LISTEN      4390/kube-controlle 

5.部署Kubernetes Scheduler

创建systemd文件:

[root@master-1 ~]# vim /usr/lib/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/GoogleCloudPlatform/kubernetes

[Service]
ExecStart=/opt/kubernetes/bin/kube-scheduler \\\\
  --address=127.0.0.1 \\\\
  --master=http://127.0.0.1:8080 \\\\
  --leader-elect=true \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

启动服务

[root@master-1 ~]# systemctl daemon-reload
[root@master-1 ~]# systemctl start kube-scheduler
[root@master-1 ~]# systemctl enable kube-scheduler

查看服务状态

[root@master-1 ~]# systemctl status kube-scheduler
[root@master-1 ~]# netstat -lntp|grep kube-scheduler
tcp        0      0 127.0.0.1:10251         0.0.0.0:*               LISTEN      4445/kube-scheduler

6. Master节点部署kube-proxy(可选)

(参见node节点部署部分,需要创建对应的kube-proxy家目录)

7. 使用上述方式,配置master-1和master-2

将master-1上的ssl,cfg,bin 文件拷贝到其它master节点的对应位置。
配置各个服务的启动文件,并启动。

8.部署kubectl命令行工具

安装二进制包

[root@master-1 ~]# cd /tmp/kubernetes/node/bin/
[root@master-1 bin]# cp kubectl /opt/kubernetes/bin/

2.创建admin证书签名

[root@master-1 ~]# vim /opt/kubernetes/ssl/admin-csr.json
{
  CN: admin,
  hosts: [],
  key: {
    algo: rsa,
    size: 2048
  },
  names: [
    {
      C: CN,
      ST: BeiJing,
      L: BeiJing,
      O: system:masters,
      OU: System
    }
  ]
}

3.生成admin证书和私钥

[root@master-1 ~]# cd /opt/kubernetes/ssl/
[root@master-1 ssl]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \\\\
   -ca-key=/opt/kubernetes/ssl/ca-key.pem \\\\
   -config=/opt/kubernetes/ssl/ca-config.json \\\\
   -profile=kubernetes admin-csr.json | cfssljson -bare admin

设置集群参数

[root@master-1 ~]#  kubectl config set-cluster kubernetes \\\\
    --certificate-authority=/opt/kubernetes/ssl/ca.pem \\\\
    --embed-certs=true \\\\
    --server=https://192.168.20.50:6443
Cluster kubernetes set.

5.设置客户端认证参数:

[root@naster-1 ~]# kubectl config set-credentials admin \\\\
    --client-certificate=/opt/kubernetes/ssl/admin.pem \\\\
    --embed-certs=true \\\\
    --client-key=/opt/kubernetes/ssl/admin-key.pem
User admin set.

6.设置上下文参数

[root@master-1 ~]# kubectl config set-context kubernetes \\\\
    --cluster=kubernetes \\\\
    --user=admin
Context kubernetes created.

7.设置默认上下文:

[root@master-1 ~]# kubectl config use-context kubernetes
Switched to context kubernetes.

8.使用Kubectl工具查看当前状态:

[root@master-1 ~]# kubectl get cs
NAME                 STATUS    MESSAGE             ERROR
scheduler            Healthy   ok                  
controller-manager   Healthy   ok                  
etcd-1               Healthy   {health:true}   
etcd-2               Healthy   {health:true}   
etcd-0               Healthy   {health:true}   

Node节点部署
1.安装所需的服务

将kubernetes-node-linux-amd64.tar.gz压缩包在node节点解压,执行如下操作

[root@k8s-node-1 ~]# cd /tmp/kubernetes/node/bin
[root@k8s-node-1 bin]# cp kubelet kube-proxy  /opt/kubernetes/bin/
[root@k8s-node-1 bin]# scp kubelet kube-proxy  192.168.20.48:/opt/kubernetes/bin/
[root@k8s-node-1 bin]# scp kubelet kube-proxy  192.168.20.49:/opt/kubernetes/bin/

2.配置角色和认证参数

在master-1上创建角色绑定

[root@master-1 ~]# kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
clusterrolebinding.rbac.authorization.k8s.io kubelet-bootstrap created

创建kubelet bootstrapping kubeconfig文件,设置集群参数

[root@master-1 ~]# kubectl config set-cluster kubernetes \\\\
   --certificate-authority=/opt/kubernetes/ssl/ca.pem \\\\
   --embed-certs=true \\\\
   --server=https://192.168.20.50:6443 \\\\
   --kubeconfig=bootstrap.kubeconfig
Cluster kubernetes set.

3.设置客户端认证参数

[root@master-1 ~]# kubectl config set-credentials kubelet-bootstrap \\\\
   --token=197f33fcbbfab2d15603dcc4408358f5 \\\\
   --kubeconfig=bootstrap.kubeconfig   

User kubelet-bootstrap set.

4.设置上下文认证参数

[root@master-1 ~]# kubectl config set-context default \\\\
    --cluster=kubernetes \\\\
    --user=kubelet-bootstrap \\\\
    --kubeconfig=bootstrap.kubeconfig
Context default created.

5.选择默认上下文

[root@master-1 ~]# kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
Switched to context default

6.执行上面的操作后,会在当前目录生成一个bootstrap.kubeconfig的config文件,将此文件分发到各节点:

[root@k8s-node-1 ~]# cp bootstrap.kubeconfig /opt/kubernetes/cfg/
[root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.47:/opt/kubernetes/cfg/
[root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.48:/opt/kubernetes/cfg/
[root@k8s-node-1 ~]# scp bootstrap.kubeconfig 192.168.20.49:/opt/kubernetes/cfg/

将master上更新的配置拷贝到其它master节点。

3.设置支持CNI

以下操作需要在所有node节点执行

设置Kubernetes对CNI的支持:

[root@k8s-node-2 ~]# mkdir -p /etc/cni/net.d
[root@k8s-node-2 ~]# vim /etc/cni/net.d/10-default.conf
{
        name: flannel,
        type: flannel,
        delegate: {
            bridge: docker0,
            isDefaultGateway: true,
            mtu: 1400
        }
}

4.配置Kubelet服务

以下操作需要在所有node节点执行

创建kubelet服务配置文件

[root@k8s-node-2 ~]# mkdir /var/lib/kubelet
[root@k8s-node-2 ~]# vim /usr/lib/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=docker.service
Requires=docker.service

[Service]
WorkingDirectory=/var/lib/kubelet
ExecStart=/opt/kubernetes/bin/kubelet \\\\
  --address=192.168.20.48 \\\\
  --hostname-override=192.168.20.48 \\\\
  --pod-infra-container-image=mirrorgooglecontainers/pause-amd64:3.1 \\\\
  --experimental-bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\\\
  --kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\\\
  --cert-dir=/opt/kubernetes/ssl \\\\
  --network-plugin=cni \\\\
  --cni-conf-dir=/etc/cni/net.d \\\\
  --cni-bin-dir=/opt/kubernetes/bin/cni \\\\
  --cluster-dns=10.1.0.2 \\\\
  --cluster-domain=cluster.local. \\\\
  --hairpin-mode hairpin-veth \\\\
  --allow-privileged=true \\\\
  --fail-swap-on=false \\\\
  --logtostderr=true \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log
Restart=on-failure
RestartSec=5

[Install]
WantedBy=multi-user.target

启动Kubelet

[root@k8s-node-2 ~]# systemctl daemon-reload
[root@k8s-node-2 ~]# systemctl start kubelet
[root@k8s-node-2 ~]# systemctl enable kubelet
[root@k8s-node-2 ~]# systemctl status kubelet

在master节点上查看是否收到node节点的csr请求:

[root@master-1 ~]# kubectl get csr
NAME                                                   AGE       REQUESTOR           CONDITION
node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk   2m        kubelet-bootstrap   Pending

批准kubelet的TLS请求

[root@master-1 ~]# kubectl get csr|grep \\\'Pending\\\' | awk \\\'NR>0{print $1}\\\'| xargs kubectl certificate approve
certificatesigningrequest.certificates.k8s.io node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk approved

[root@kmaster-1 ~]# kubectl get csr
NAME                                                   AGE       REQUESTOR           CONDITION
node-csr-FDH7Y3rghf1WPsEJH2EYnofvOSeyHn2f-l_-4rH-LEk   11m       kubelet-bootstrap   Approved,Issued

之后查看node节点状态:

[root@master-1 ~]# kubectl get node
NAME            STATUS    ROLES     AGE       VERSION
192.168.20.48   Ready     <none>    35s       v1.14.1

node节点上查看kubelet 服务

[root@k8s-node-2 ~]# netstat -lntp|grep kubelet
tcp        0      0 127.0.0.1:10248         0.0.0.0:*               LISTEN      7917/kubelet        
tcp        0      0 192.168.20.32:10250     0.0.0.0:*               LISTEN      7917/kubelet        
tcp        0      0 192.168.20.32:10255     0.0.0.0:*               LISTEN      7917/kubelet        
tcp        0      0 192.168.20.32:4194      0.0.0.0:*               LISTEN      7917/kubelet     

5.部署kube-proxy

1.配置kube-proxy使用LVS,所有节点执行:

yum install -y ipvsadm ipset conntrack

2.创建证书请求

[root@master-1 ~]# vim kube-proxy-csr.json
{
  CN: system:kube-proxy,
  hosts: [],
  key: {
    algo: rsa,
    size: 2048
  },
  names: [
    {
      C: CN,
      ST: BeiJing,
      L: BeiJing,
      O: k8s,
      OU: System
    }
  ]
}

3.生成证书

[root@master-1 ~]#  cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \\\\
    -ca-key=/opt/kubernetes/ssl/ca-key.pem \\\\
    -config=/opt/kubernetes/ssl/ca-config.json \\\\
    -profile=kubernetes  kube-proxy-csr.json | cfssljson -bare kube-proxy

4.分发证书到所有node节点

[root@master-1 ~]# cp kube-proxy*.pem /opt/kubernetes/ssl/
[root@master-1 ~]# scp kube-proxy*.pem 192.168.20.47:/opt/kubernetes/ssl/
[root@master-1 ~]# scp kube-proxy*.pem 192.168.20.48:/opt/kubernetes/ssl/
[root@master-1 ~]# scp kube-proxy*.pem 192.168.20.49:/opt/kubernetes/ssl/

5.创建kube-proxy配置文件

[root@k8s-node-2 ~]# kubectl config set-cluster kubernetes  \\\\
  --certificate-authority=/opt/kubernetes/ssl/ca.pem   \\\\
  --embed-certs=true   \\\\
  --server=https://192.168.20.50:6443 \\\\
  --kubeconfig=kube-proxy.kubeconfig
Cluster kubernetes set.

6.创建kube-proxy用户:

[root@k8s-node-2 ~]# kubectl config set-credentials kube-proxy \\\\
    --client-certificate=/opt/kubernetes/ssl/kube-proxy.pem \\\\
    --client-key=/opt/kubernetes/ssl/kube-proxy-key.pem \\\\
    --embed-certs=true \\\\
    --kubeconfig=kube-proxy.kubeconfig
User kube-proxy set.

7.设置默认上下文:

[root@k8s-node-2 ~]# kubectl config set-context default \\\\
    --cluster=kubernetes \\\\
    --user=kube-proxy \\\\
    --kubeconfig=kube-proxy.kubeconfig
Context default created.

8.切换上下文为default:

[root@k8s-node-2 ~]# kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
Switched to context default.

9.分发kube-proxy.kubeconfig配置文件到所有

[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.44:/opt/kubernetes/cfg/
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.45:/opt/kubernetes/cfg/
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.46:/opt/kubernetes/cfg/
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.47:/opt/kubernetes/cfg/
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.48:/opt/kubernetes/cfg/
[root@k8s-node-2 ~]# scp kube-proxy.kubeconfig 192.168.20.459/opt/kubernetes/cfg/

10.创建kube-proxy服务配置文件

所有节点执行,注意配置文件中IP需要修改为本机对应的IP

[root@k8s-node-1 ~]# mkdir /var/lib/kube-proxy
[root@k8s-node-1 ~]# vim /usr/lib/systemd/system/kube-proxy.service
[Unit]
Description=Kubernetes Kube-Proxy Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target

[Service]
WorkingDirectory=/var/lib/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy \\\\
  --bind-address=192.168.20.47 \\\\
  --hostname-override=192.168.20.47 \\\\
  --kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig \\\\
  --masquerade-all \\\\
  --feature-gates=SupportIPVSProxyMode=true \\\\
  --proxy-mode=ipvs \\\\
  --ipvs-min-sync-period=5s \\\\
  --ipvs-sync-period=5s \\\\
  --ipvs-scheduler=rr \\\\
  --logtostderr=true \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log

Restart=on-failure
RestartSec=5
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

11.启动服务

systemctl start kube-proxy
systemctl enable kube-proxy
systemctl status kube-proxy

12.查看服务状态,lvs状态

[root@k8s-node-1 ~]# ipvsadm -L -n
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.1.0.1:443 rr
  -> 192.168.20.44:6443           Masq    1      0          0         
  -> 192.168.20.45:6443           Masq    1      0          0         
  -> 192.168.20.46:6443           Masq    1      1          0  

所有node节点配置成功后可以看到如下结果:

[root@master-1 ~]# kubectl get node
NAME            STATUS   ROLES    AGE     VERSION
192.168.20.47   Ready    <none>   6d21h   v1.14.1
192.168.20.48   Ready    <none>   4d1h    v1.14.1
192.168.20.49   Ready    <none>   4d1h    v1.14.1

Flannel 网络部署

所有节点都需要部署flannel。

1.创建Flannel证书

1.生成证书文件

[root@master-1 ~]# vim flanneld-csr.json
{
  CN: flanneld,
  hosts: [],
  key: {
    algo: rsa,
    size: 2048
  },
  names: [
    {
      C: CN,
      ST: BeiJing,
      L: BeiJing,
      O: k8s,
      OU: System
    }
  ]
}

2.生成证书

[root@master-1 ~]# cfssl gencert -ca=/opt/kubernetes/ssl/ca.pem \\\\
    -ca-key=/opt/kubernetes/ssl/ca-key.pem \\\\
    -config=/opt/kubernetes/ssl/ca-config.json \\\\
    -profile=kubernetes flanneld-csr.json | cfssljson -bare flanneld

3.分发证书

[root@master-1 ~]# cp flanneld*.pem /opt/kubernetes/ssl/
[root@master-1 ~]# scp flanneld*.pem {all-k8s-node}:/opt/kubernetes/ssl/

2.部署flannel

1.将之前下载的flannel压缩包解压,并分发到其它节点如下操作:

cp mk-docker-opts.sh flanneld /opt/kubernetes/bin/
scp mk-docker-opts.sh flanneld {all-k8s-node}:/opt/kubernetes/bin/

2.创建如下文件,分发到各个node节点:

[root@k8s-node-1 tmp]# vim remove-docker0.sh
#!/bin/bash
# Delete default docker bridge, so that docker can start with flannel network.

# exit on any error
set -e

rc=0
ip link show docker0 >/dev/null 2>&1 || rc=$?
if [[ $rc -eq 0 ]]; then
  ip link set dev docker0 down
  ip link delete docker0
fi
[root@k8s-node-1 tmp]# cp remove-docker0.sh /opt/kubernetes/bin/
[root@k8s-node-1 tmp]# scp remove-docker0.sh 192.168.20.48:/opt/kubernetes/bin/
[root@k8s-node-1 tmp]# scp remove-docker0.sh 192.168.20.49:/opt/kubernetes/bin/

3.配置flannel

[root@k8s-node-1 ~]# vim /opt/kubernetes/cfg/flannel
FLANNEL_ETCD=-etcd-endpoints=https://192.168.20.31:2379,https://192.168.20.32:2379,https://192.168.20.33:2379
FLANNEL_ETCD_KEY=-etcd-prefix=/kubernetes/network
FLANNEL_ETCD_CAFILE=--etcd-cafile=/opt/kubernetes/ssl/ca.pem
FLANNEL_ETCD_CERTFILE=--etcd-certfile=/opt/kubernetes/ssl/flanneld.pem
FLANNEL_ETCD_KEYFILE=--etcd-keyfile=/opt/kubernetes/ssl/flanneld-key.pem

创建flannel服务文件

[root@k8s-node-1 ~]# vim /usr/lib/systemd/system/flannel.service
[Unit]
Description=Flanneld overlay address etcd agent
After=network.target
Before=docker.service

[Service]
EnvironmentFile=-/opt/kubernetes/cfg/flannel
ExecStartPre=/opt/kubernetes/bin/remove-docker0.sh
ExecStart=/opt/kubernetes/bin/flanneld ${FLANNEL_ETCD} ${FLANNEL_ETCD_KEY} ${FLANNEL_ETCD_CAFILE} ${FLANNEL_ETCD_CERTFILE} ${FLANNEL_ETCD_KEYFILE}
ExecStartPost=/opt/kubernetes/bin/mk-docker-opts.sh -d /run/flannel/docker

Type=notify

[Install]
WantedBy=multi-user.target
RequiredBy=docker.service

5.分发创建的配置文件到各个节点:

scp /opt/kubernetes/cfg/flannel {all-k8s-node}:/opt/kubernetes/cfg/
scp /usr/lib/systemd/system/flannel.service {all-k8s-node}:/usr/lib/systemd/system/

3. Flannel CNI集成

1.下载CNI插件

wget https://github.com/containernetworking/plugins/releases/download/v0.7.5/cni-plugins-amd64-v0.7.5.tgz
[root@k8s-node-1 tmp]# mkdir /opt/kubernetes/bin/cni
[root@k8s-node-1 tmp]# tar xf cni-plugins-amd64-v0.7.5.tgz -C /opt/kubernetes/bin/cni

2.分发软件到各个节点:

[root@k8s-node-1 ~]# scp -r /opt/kubernetes/bin/cni/* {all-k8s-node}:/opt/kubernetes/bin/cni/

3.在etcd中创建key

[root@master-1 ~]# /opt/kubernetes/bin/etcdctl --ca-file /opt/kubernetes/ssl/ca.pem --cert-file /opt/kubernetes/ssl/flanneld.pem --key-file /opt/kubernetes/ssl/flanneld-key.pem \\\\
     --no-sync -C https://192.168.20.44:2379,https://192.168.20.45:2379,https://192.168.20.46:2379 \\\\
     mk /kubernetes/network/config \\\'{ Network: 10.2.0.0/16, Backend: { Type: vxlan, VNI: 1 }}\\\' >/dev/null 2>&1

4.各个节点启动flannel

[root@k8s-node-1 ~]# chmod  x /opt/kubernetes/bin/*
[root@k8s-node-1 ~]# systemctl daemon-reload
[root@k8s-node-1 ~]# systemctl start flannel 
[root@k8s-node-1 ~]# systemctl enable flannel 

配置Docker使用Flannel

1.修改docker的systemd的文件:

[Unit] #在Unit下面修改After和增加Requires
After=network-online.target firewalld.service flannel.service
Wants=network-online.target
Requires=flannel.service

[Service] #增加EnvironmentFile=-/run/flannel/docker
Type=notify
EnvironmentFile=-/run/flannel/docker
ExecStart=/usr/bin/dockerd $DOCKER_OPTS

2.其它NODE节点也做相同的修改

[root@k8s-node-2 ~]# scp /usr/lib/systemd/system/docker.service {k8s-node}:/usr/lib/systemd/system/

3.重启docker, 出现docker0网卡,且在10.2.0.0/16网段,说明配置成功

[root@k8s-node-3 ~]# systemctl daemon-reload
[root@k8s-node-3 ~]# systemctl restart docker
[root@k8s-node-3 ~]# ip a| grep -A 3 \\\'docker0\\\'
7: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN 
    link/ether 02:42:e9:2b:36:86 brd ff:ff:ff:ff:ff:ff
    inet 10.2.79.1/24 scope global docker0
       valid_lft forever preferred_lft forever

插件部署
1.创建CoreDNS

创建coredns.yaml,内容如下:

apiVersion: v1
kind: ServiceAccount
metadata:
  name: coredns
  namespace: kube-system
  labels:
      kubernetes.io/cluster-service: true
      addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: Reconcile
  name: system:coredns
rules:
- apiGroups:
  - 
  resources:
  - endpoints
  - services
  - pods
  - namespaces
  verbs:
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: true
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
    addonmanager.kubernetes.io/mode: EnsureExists
  name: system:coredns
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:coredns
subjects:
- kind: ServiceAccount
  name: coredns
  namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: coredns
  namespace: kube-system
  labels:
      addonmanager.kubernetes.io/mode: EnsureExists
data:
  Corefile: |
    .:53 {
        errors
        health
        kubernetes cluster.local. in-addr.arpa ip6.arpa {
            pods insecure
            upstream
            fallthrough in-addr.arpa ip6.arpa
        }
        prometheus :9153
        proxy . /etc/resolv.conf
        cache 30
    }
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: coredns
  namespace: kube-system
  labels:
    k8s-app: coredns
    kubernetes.io/cluster-service: true
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: CoreDNS
spec:
  replicas: 2
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxUnavailable: 1
  selector:
    matchLabels:
      k8s-app: coredns
  template:
    metadata:
      labels:
        k8s-app: coredns
    spec:
      serviceAccountName: coredns
      tolerations:
        - key: node-role.kubernetes.io/master
          effect: NoSchedule
        - key: CriticalAddonsOnly
          operator: Exists
      containers:
      - name: coredns
        image: coredns/coredns:1.4.0
        imagePullPolicy: IfNotPresent
        resources:
          limits:
            memory: 170Mi
          requests:
            cpu: 100m
            memory: 70Mi
        args: [ -conf, /etc/coredns/Corefile ]
        volumeMounts:
        - name: config-volume
          mountPath: /etc/coredns
        ports:
        - containerPort: 53
          name: dns
          protocol: UDP
        - containerPort: 53
          name: dns-tcp
          protocol: TCP
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 60
          timeoutSeconds: 5
          successThreshold: 1
          failureThreshold: 5
      dnsPolicy: Default
      volumes:
        - name: config-volume
          configMap:
            name: coredns
            items:
            - key: Corefile
              path: Corefile
---
apiVersion: v1
kind: Service
metadata:
  name: coredns
  namespace: kube-system
  labels:
    k8s-app: coredns
    kubernetes.io/cluster-service: true
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: CoreDNS
spec:
  selector:
    k8s-app: coredns
  clusterIP: 10.1.0.2
  ports:
  - name: dns
    port: 53
    protocol: UDP
  - name: dns-tcp
    port: 53
    protocol: TCP

执行此文件:

[root@master-1 tmp]# kubectl create -f coredns.yaml

确认DNS服务运行:

[root@master-1 ~]# kubectl get pod  -n kube-system  -o wide
NAME                                    READY   STATUS    RESTARTS   AGE    IP          NODE            NOMINATED NODE   READINESS GATES
coredns-76fcfc9f65-9fkfh                1/1     Running   2          3d7h   10.2.45.3   192.168.20.49   <none>           <none>
coredns-76fcfc9f65-zfplt                1/1     Running   1          3d6h   10.2.24.2   192.168.20.48   <none>           <none>

2. 部署Dashboard

1.执行目录中的yaml,部署Dashboard:

[root@master-1 ~]# ll /tmp/dashboard/
total 20
-rw-r--r-- 1 root root  356 Jul 27 03:43 admin-user-sa-rbac.yaml
-rw-r--r-- 1 root root 4253 Jul 27 03:47 kubernetes-dashboard.yaml
-rw-r--r-- 1 root root  458 Jul 27 03:49 ui-admin-rbac.yaml
-rw-r--r-- 1 root root  477 Jul 27 03:50 ui-read-rbac.yaml

[root@master-1 ~]# kubectl create -f /tmp/dashboard/

2.确认服务是否正常运行:

[root@master-1 ~]# kubectl get pod -n kube-system
NAME                                    READY   STATUS    RESTARTS   AGE
coredns-76fcfc9f65-9fkfh                1/1     Running   2          3d7h
coredns-76fcfc9f65-zfplt                1/1     Running   1          3d6h
kubernetes-dashboard-68ddcc97fc-w4bxf   1/1     Running   1          3d2h

[root@master-1 ~]# kubectl cluster-info
Kubernetes master is running at https://192.168.20.50:6443
CoreDNS is running at https://192.168.20.50:6443/api/v1/namespaces/kube-system/services/coredns:dns/proxy
kubernetes-dashboard is running at https://192.168.20.50:6443/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy

To further debug and diagnose cluster problems, use \\\'kubectl cluster-info dump\\\'.

3.根据提示信息,使用dashboard的url,登录,账号admin/admin, 使用如下命令生成token:

[root@master-1 ~]# kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep admin-user | awk \\\'{print $1}\\\')

4.复制token,选择使用令牌的方式登录:

3. Heapster 部署 (可选)

1.使用如下文件部署Heastper:

[root@master-1 ~]# ll heastper/
total 12
-rw-r--r-- 1 root root 2306 Jul 26 20:28 grafana.yaml
-rw-r--r-- 1 root root 1562 Jul 26 20:29 heapster.yaml
-rw-r--r-- 1 root root 1161 Jul 26 20:29 influxdb.yaml

[root@k8s-node-1 ~]# kubectl create -f heastper/

登录dashboard,查看石头出现资源利用率的图表。

使用kubectl cluster-info命令,查看当前服务的url地址。

补充说明
etcd无证书配置说明

在实际的生产环境中,如果都是使用的内网环境,可以将etd集群配置为无证书的模式,这样在配置和后续的故障恢复中会更简单。
etcd无证书配置需要使用http访问,安装上述文档,需要修改如下配置:

etcd的配置文件注释掉安全证书部分,并将所有url改为http方式:

# cat /opt/kubernetes/cfg/etcd.conf
#[member]
ETCD_NAME=etcd-node-1
ETCD_DATA_DIR=/var/lib/etcd/default.etcd
#ETCD_SNAPSHOT_COUNTER=10000
#ETCD_HEARTBEAT_INTERVAL=100
#ETCD_ELECTION_TIMEOUT=1000
ETCD_LISTEN_PEER_URLS=http://192.168.20.31:2380
ETCD_LISTEN_CLIENT_URLS=http://192.168.20.31:2379
#ETCD_MAX_SNAPSHOTS=5
#ETCD_MAX_WALS=5
#ETCD_CORS=
#[cluster]
ETCD_INITIAL_ADVERTISE_PEER_URLS=http://192.168.20.31:2380
# if you use different ETCD_NAME (e.g. test),
# set ETCD_INITIAL_CLUSTER value for this name, i.e. test=http://...
ETCD_INITIAL_CLUSTER=etcd-node-1=http://192.168.20.31:2380,etcd-node-2=http://192.168.20.32:2380,etcd-node-3=http://192.168.20.33:2380
ETCD_INITIAL_CLUSTER_STATE=new
ETCD_INITIAL_CLUSTER_TOKEN=k8s-etcd-cluster
ETCD_ADVERTISE_CLIENT_URLS=http://192.168.20.31:2379
#[security]
#CLIENT_CERT_AUTH=true
#ETCD_CA_FILE=/opt/kubernetes/ssl/ca.pem
#ETCD_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
#ETCD_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem
#PEER_CLIENT_CERT_AUTH=true
#ETCD_PEER_CA_FILE=/opt/kubernetes/ssl/ca.pem
#ETCD_PEER_CERT_FILE=/opt/kubernetes/ssl/etcd.pem
#ETCD_PEER_KEY_FILE=/opt/kubernetes/ssl/etcd-key.pem

fannel网络部分注释掉etcd的证书配置参数,并将URL该位http:

# cat /opt/kubernetes/cfg/flannel 

FLANNEL_ETCD=-etcd-endpoints=http://192.168.20.31:2379,http://192.168.20.32:2379,http://192.168.20.33:2379
FLANNEL_ETCD_KEY=-etcd-prefix=/kubernetes/network
#FLANNEL_ETCD_CAFILE=--etcd-cafile=/opt/kubernetes/ssl/ca.pem
#FLANNEL_ETCD_CERTFILE=--etcd-certfile=/opt/kubernetes/ssl/flanneld.pem
#FLANNEL_ETCD_KEYFILE=--etcd-keyfile=/opt/kubernetes/ssl/flanneld-key.pem

3.kube-apiserver中去掉etcd的证书配置,这个文件中需要把参数直接删除,并将url改为http:

# cat /usr/lib/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/GoogleCloudPlatform/kubernetes
After=network.target

[Service]
ExecStart=/opt/kubernetes/bin/kube-apiserver \\\\
  --admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota,NodeRestriction \\\\
  --bind-address=192.168.20.31 \\\\
  --insecure-bind-address=127.0.0.1 \\\\
  --authorization-mode=Node,RBAC \\\\
  --runtime-config=rbac.authorization.k8s.io/v1 \\\\
  --kubelet-https=true \\\\
  --anonymous-auth=false \\\\
  --basic-auth-file=/opt/kubernetes/ssl/basic-auth.csv \\\\
  --enable-bootstrap-token-auth \\\\
  --token-auth-file=/opt/kubernetes/ssl/bootstrap-token.csv \\\\
  --service-cluster-ip-range=10.1.0.0/16 \\\\
  --service-node-port-range=20000-40000 \\\\
  --tls-cert-file=/opt/kubernetes/ssl/kubernetes.pem \\\\
  --tls-private-key-file=/opt/kubernetes/ssl/kubernetes-key.pem \\\\
  --client-ca-file=/opt/kubernetes/ssl/ca.pem \\\\
  --service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \\\\
  --etcd-servers=http://192.168.20.31:2379,http://192.168.20.32:2379,http://192.168.20.33:2379 \\\\
  --enable-swagger-ui=true \\\\
  --allow-privileged=true \\\\
  --audit-log-maxage=30 \\\\
  --audit-log-maxbackup=3 \\\\
  --audit-log-maxsize=100 \\\\
  --audit-log-path=/opt/kubernetes/log/api-audit.log \\\\
  --event-ttl=1h \\\\
  --v=2 \\\\
  --logtostderr=false \\\\
  --log-dir=/opt/kubernetes/log
Restart=on-failure
RestartSec=5
Type=notify
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target

4.分别重启flannel、kubelet、kube-apiserver等服务。

更多关于云服务器域名注册虚拟主机的问题,请访问西部数码官网:www.west.cn

赞(0)
声明:本网站发布的内容(图片、视频和文字)以原创、转载和分享网络内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-62778877-8306;邮箱:fanjiao@west.cn。本站原创内容未经允许不得转载,或转载时需注明出处:西部数码知识库 » K8S1.14高可用生产集群部署方案

登录

找回密码

注册